Synthesis and Mass Spectra of some 1-Aroylamino-5-arylaminomethyl-1,2,3-triazoles

Efstathios Laskos, Pygmalion S. Lianis and Nestor A. Rodios*

Laboratory of Organic Chemistry, University of Thessaloniki, GR-54006 Thessaloniki, Greece Received July 19, 1993

The title compounds 2 are prepared from the reaction of 1-(N,N-diaroyl)amino-5-bromomethyl-1,2,3-triazoles with aromatic amines. The fragmentation pattern upon electron impact at 70 eV of compounds 2 is studied. The molecular ion peak is present in all the spectra examined. Besides the $[M-28]^+$, there is also a more abundant $[M-29]^+$ peak, corresponding to a N_2H loss of the molecular ion. The ion $Ar^2NH = CH_2$ is the base or the most prominent peak.

J. Heterocyclic Chem., 31, 425 (1994).

Derivatives of 1-aminosubstituted-1,2,3-triazole are prepared by oxidation of bis-hydrazones or substituted bis-hydrazones of α -dicarbonyl compounds [1]. They can be used as intermediates for the preparation of interesting fused heterocyclic systems, and recently 1-(N,N-diaroyl)amino-5-bromomethyl-1,2,3-triazoles and 1-aroylamino-1,2,3-triazole-1-carboxylic acids were used for the preparation of [1,2,3]triazolo[1,5-d][1,3,4]oxadiazine derivatives [2,3]. Also, 1-benzylideneamino- and 1-phenacylideneamino-1,2, 3-triazoles reacted with nitrilimine [4], to 1,2,3- and 1,3,4 triazole derivatives, whereas with ketenes N-triazolylazetidinones were synthesized [5]. On the other hand, the title compounds have been used for the synthesis of condensed [1,2,3]triazolo[5,1-f][1,2,4]triazines [6].

It is therefore of interest to study their spectroscopic characteristics, and especially their mass fragmentation pattern, since in the reported mass spectra of various 1-amino-1,2,3-triazole derivatives [7-10] attention has been mainly paid on the differentiation of their fragmentation pattern caused by the N-substituents of the 1-amino moiety, whereas the impact on their fragmentation that might be caused by various 4- or 5-substituents of the triazole ring only in a few cases has been considered [9]. The scope of this work is to study the electron impact mass spectra of the title compounds and to examine the influence, caused

Ph
$$CH_2Br$$
 AR^2NII_2
 $N-N(COAr^1)_2$

EtOH, Reflux -60 min

a) $Ar^1 = C_6 H_5$ b) $Ar^1 = p\text{-MeO-}C_6 H_4$

c) Ar $^{1} = p\text{-Cl-C}_{6}\text{II}_{4}$

by the 5-arylaminomethyl group, in their fragmentation pattern.

Results and Discussion.

1-Aroylamino-5-arylaminomethyl-1,2,3-triazoles, 2, have been prepared in good yields from 1-(N,N-diaroyl)amino-5-bromomethyl-1,2,3-triazoles [2], 1, by refluxing with the appropriate aromatic amine.

In their ir spectra compounds 2 show a band at $1680 \cdot 1690 \, \text{cm}^{-1}$ for the C=0 bond and bands at $3150 \cdot 3350 \, \text{cm}^{-1}$ for the NH groups. In their 'H nmr spectra, the methylenic protons CH₂ appear at $\delta = 4.1 \cdot 4.6$ as a broadened singlet or, in the case of the compounds 2e and 2f, as a doublet with a J = 5.5 Hz and J = 4.2 Hz respectively, from the coupling with the NH proton. The amide proton, NHCO, appears at $\delta \sim 12$ ppm and the Ar'NH proton shows a broad peak in the region between 4.0 and 6.5 ppm.

The EI mass spectra of compounds 2 show a complicated fragmentation pattern with peaks corresponding to ions resulting from the fragmentation of the triazole ring and of the 5-arylaminomethyl moiety.

All the compounds under study exhibit a prominent peak for the molecular ion M^+ , which mostly is accom-

CH₂NHAr²

N_{SN}-N-NHCOAr¹ + Ar¹CONHAr

2 (a-h) 3 (a-h)
(55-77%)

a) Ar¹ = Ar² = C₆H₅
b) Ar¹ = C₆H₅, Ar² =
$$p$$
-MeO-C₆H₄
c) Ar¹ = C₆H₅, Ar² = p -MeC-C₆H₄
d) Ar¹ = C₆H₅, Ar² = p -Cl-C₆H₄
e) Ar¹ = C₆H₅, Ar² = p -Cl-C₆H₄
f) Ar¹ = C₆H₅, Ar² = p -Cl-C₆H₄
g) Ar¹ = p -MeO-C₆H₄, Ar² = C₆H₅
h) Ar¹ = p -Cl-C₆H₄, Ar² = C₆H₅

panied by a [M+1]⁺ peak of comparable relative intensity.

The molecular ion is split either by a loss of N₂ giving rise to the [M-28]⁺⁻ fragment (Scheme 1), which is typical for the fragmentation of 1-substituted 1,2,3-triazole derivatives [7-11], or by a N₁-NHCO bond cleavage, giving peaks corresponding to the [M-Ar¹CON]⁺⁻, IV, or to the

[M-Ar¹CONH]*, V, ions (Scheme 1). Analogous fragmentation with N₁-NH splitting has been observed in the mass spectra of 1-sulfonylamino-1,2,3-triazoles [10], whereas 1-aroylamino-5-methyl-1,2,3-triazole derivatives [12] and 1-ureido-5-methyl-1,2,3-triazole derivatives [8] show in their mass spectra the [M-Ar¹CON]* peak but with very

Table 1
Main Fragment Ions in the El Mass Spectra of Compounds 2, m/z, (% Relative Intensities)

Main Fragment Ions in the El Mass Spectra of Compounds 2, 111/2, (% Relative Intensities)											
	2a	2ь	2c	2d	2e	2f	2g	2h			
[M+1]+	370 (10)	400 (26)	384 (34)	404/406 (8)	404/406 (35)	-	400 (0.2)	404/406 (3)			
[M]+•	369	399	383	403/405 (14)	403/405 (11)	414 (0.5)	399 (2)	403/405 (7)			
[M-28]+*	(13) 341	(46) 371	(26) 355	375/377	375/377	-	371	375/377			
	(2)	(3)	(2)	(3)	(10)		(1)	(1.7)			
[M-29]+	340	370	354	374/376	374/376	-	370	374/376 (3)			
ne a loone.	(10)	(4)	(5) 264	(4) 284/286	(12) 284/286	295	(1) 250	250			
[M-Ar ¹ CON]+• (IV)	250 (9)	280 (5)	(3)	(4)	(6)	(1)	(4)	(3)			
[M-Ar ¹ CONH]+	249	279	263	283/285	283/285	294	249	249			
(V)	(33)	(10)	(11)	(10)	(18)	(0.8)	(23)	(8)			
[M-28-Ar ¹ CON]+•	250	250	250	250	250	_	280	284/286			
(VI)	(9)	(9) 251	(3)	(2) 255/257	(7) 255/257	266	(0.5) 221	(1) 221			
[M-28-Ar ¹ CONH]+ (VII)	221 (11)	251 (16)	235 (13)	(14)	(20)	(1)	(5)	(5)			
[M-28-Ar ¹ CONH ₂]+•	220	250	234	254/256	254/256	265	220	220			
(VIII)	(7)	(9)	(7)	(4)	(6)	(2)	(3)	(2)			
[M-29-Ar ¹ CONH ₂]+	219	249	233	253/255	253/255	264	219	219			
(IX)	(23)	(26)	(16)	(15)	(21)	(9)	(14)	(8)			
PhC≡CCH2NH2Ar2	208	238	222	242/244	242/244	253	208	208			
(X)	(14)	(21)	(30)	(9)	(15) 241/243	(1) 252	(5) 207	(8) 207			
[PhC≡CCH ₂ NHAr ²]+• (XI)	207 (5)	237 (12)	221 (7)	241/243 (3)	(5)	(5)	(1)	(4)			
				240/242	240/242	251	206	206			
PhC≡CCH=NHAr ² (XII)	206 (9)	236 (35)	220 (17)	(5)	(7)	(1)	(5)	(6)			
[M-28-Ar ² N=CH ₂]+*	236	236	236	236	236	236	266	270/272			
(XIII)	(45)	(35)	(24)	(60)	(55)	(20)	(32)	(16)			
[M-28-Ar ² NH]+	249	249	249	249	249	249	279	283/285			
(XIV)	(33)	(26)	(13)	(12)	(30)		(3) 193	(6) 193			
M-29-Ar ¹ CONH ₂ -CN]+* (XIX)	193 (7)	223 (2)	207 (2)	227/229 (1)	227/229 (1)	-	(1)	(2)			
							180	180			
PhC≡NAr ² (XX)	180 (11)	210 (10)	194 (11)	214/216 (6)	214/216 (12)	_	(1)	(5)			
•						115					
PhC≡CCH ₂ (XV)	115 (64)	115 (40)	115 (76)	115 (88)	115 (80)	115 (39)	115 (26)	115 (50)			
$Ar^2N^{\dagger}H=CH_2$	106	136	120	140/142	140/142	151	106	106			
(XVI)	(100)	(100)	(100)	(52)	(60)	(4)	(47)	(100)			
[Ar ² NH ₂]+•	93	123	107	127/129	127/129	138 (22)	93 (7)	93 (13)			
[Ar ² N=CH ₂]+•	(18) 105	(45) 135	(15) 119	(9) 139/141	(24) 139/141	150	105	105			
	(80)	(8)	(3)	(3)	(3)	(2)	(2)	(5)			
Ar ¹ CO	105	105	105	105	105	105	135	139/141			
	(80)	(62)	(88)	(100)	(100)	(100)	(100)	(32)			
[Ar ¹ CONH ₂]+•	121 (2)	121 (15)	121 (11)	121 (2)	121 (3)	121 (10)	151 (1)	155/157 (1)			
+	(2)	(13)	(11)								
Ar ¹ C=NH	104	104	104	104	104	104	134	138/140			
_	(21)	(15)	(9)	(21)	(26)	(12)	(4)	(2)			
Ar ² C=NH	104	134	118	138/140	138/140	149	104	104			
	(21)	(6)	(6)	(5)	(7)	-	(3)	(10)			
[Ar ²]+	77	108	91	111/113	111/113	122 (6)	77 (23)	77 (21)			
+	(67)	(16)	(27)	(9)	(5)						
PhC=NH (m/z 104)	(21)	(15)	(9)	(21)	(26)	(12)	(3)	(10)			
[PhCN]+• (m/z 103)	(9)	(8)	(4)	(9)	(12)	(9)	(6)	(3)			
m/z 77	(67)	(43)	(70)	(50)	(57)	(48)	(23)	(21)			

Table 2
Analytical and Spectral Data of Compounds 2

Compound	Mp (℃)	Yield (%)	IR v, cm ⁻¹	¹ H NMR, CDCl ₃ /DMSO-d ₆ (4:1) (δ, from TMS)	Formula M.W.	Analysis Calcd./Found C H N		nd
2a	172-174 (benzene)	71	3360, 3340, 1680	4.20 (s, 2H, CH ₂), 4.53 (bs, 1H, NH), 6.40-6.85 (m, 3H), 6.90-7.70 (m, 10H), 7.81-8.12 (m, 2H), 11.75 (bs, 1H, NH)	C ₂₂ H ₁₉ N ₅ O 369.421	71.53 71.62	5.18 5.23	18.96 19.07
2b	147-149 (CH ₂ Cl ₂ - n-hexane)	55	3340, 3140- 3180, 1680	3.66 (s, 3H, OCH ₃), 4.12 (s, 3H, CH ₂ and NH), 6.50 (d, J = 9 Hz, 2H), 6.65 (d, J = 9 Hz, 2H), 7.15-7.65 (m, 8H), 7.83-8.03 (m, 2H)	C ₂₃ H ₂₁ N ₅ O ₂ 399.456	69.16 69.23	5.30 5.42	17.53 17.48
2 c	162-164 (benzene)	27	3260, 3150, 1680	2.15 (s, 3H, CH ₃), 4.15 (s, 2H, CH ₂), 6.48 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 7.15-7.60 (m, 8H), 7.82-8.00 (m, 2H)	C ₂₃ H ₂₁ N ₅ O 383.456	72.04 71.89	5.52 5.31	18.26 18.01
2d	178-180 (benzene)	77	3340, 3140, 1685	4.14 (bs, 1H, NH), 4.38 (s, 2H, CH ₂), 6.60 (d, J = 10 Hz, 2H), 7.03 (d, J = 10 Hz, 2H), 7.35-7.80 (m, 8H), 7.95-8.15 (m, 2H), 12.50 (bs, 1H, NH)	C ₂₂ H ₁₈ N ₅ OCl 403.874	65.43 65.64	4.49 4.65	17.34 17.58
2 e	166-168 (CH ₂ Cl ₂ - n-hexane)	57	3405, 3180, 1690	4.45 (d, J = 5.5 Hz, 2H, CH ₂), 4.89 (t, J = 5.5 Hz, 1H, NH), 6.62 (m, 2H), 7.10 (m, 2H), 7.33-7.60 (m, 6H), 7.66-7.84 (m, 2H), 7.96-8.12 (m, 2H), 12.55 (bs, 1H, NH)	C ₂₂ H ₁₈ N ₅ OCl 403.874	65.43 65.55	4.49 4.48	17.34 17.40
2 f	233-235 (ethanol)	31	3320, 3250, 1680	4.60 (d, J = 4.2 Hz, 2H, CH ₂), 6.38 (bm, 1H, NH), 6.62 (d, J = 9 Hz, 2H), 7.40-7.88 (m, 8H), 7.90- 8.20 (m, 4H)	C ₂₂ H ₁₈ N ₆ O ₃ 414.446	63.76 63.75	4.38 4.23	20.28 20.01
2g	159-161 (CH ₂ Cl ₂ - n-hexane)	29	3380, 3250, 1690	3.70 (s, 3H, OCH ₃), 4.20 (s, 2H, CH ₂), 6.48-6.92 (m, 2H), 6.94-7.65 (m, 5H), 7.85 (d, J = 8.5 Hz, 2H), 11.6 (bs, 1H, NH)	C ₂₃ H ₂₁ N ₅ O ₂ 399.456	69.16 69.17	5.30 5.60	17.53 17.40
2h	147-149 (ether- n-hexane)	44	3340, 3160, 1685	4.18 (s, 2H, CH ₂), 4.45 (bs, 1H, NH), 6.45-6.80 (m, 3H), 7.0-7.6 (m, 6H), 7.82 (d, J = 8.0 Hz, 2H), 12.0 (bs, 1H, NH)	C ₂₂ H ₁₈ N ₅ OCl 403.847	403.119 403.111		

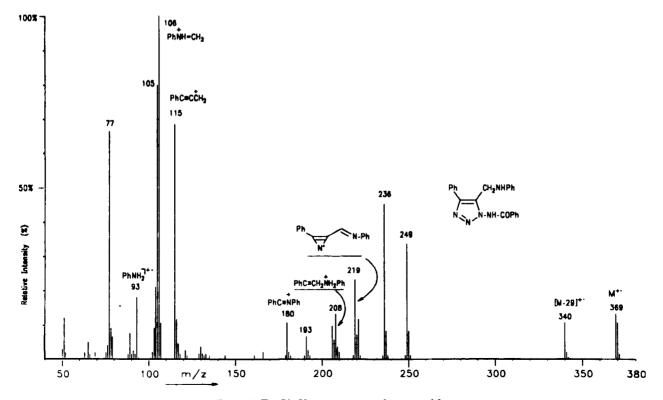


Figure 1. The 70 eV mass spectrum of compound 2a

Scheme 3

low relative intensity.

Besides the [M-28]⁺, there is a much more abundant [M-29]⁺ peak, corresponding to a N₂H elimination from the molecular ion. It is noted that the analogous 1-aroylamino-5-methyl-1,2,3-triazoles do not show in their mass spectra the [M-29]⁺ peak [12]. This implies that in the case of compounds 2 it is the 5-arylaminomethyl moiety that provides the hydrogen for the N₂H elimination (Scheme 1).

The [M-28]* ion, which may adopt either a closed or an open form [9,13], II and IIa respectively, Scheme 2, by rupture of the N-NH bond, followed by hydrogen shift, gives fragments of moderate abundances corresponding to the [M-28-Ar¹CON]*, VI, [M-28-Ar¹CONH]*, VII, and [M-28-Ar¹CONH₂]*, VIII, ions, whereas the [M-29]* ion analogously, besides VII and VIII, gives the [M-29-Ar¹CONH₂]*, IX, ion with a moderate relative abundance.

Furthermore the [M-28]⁺ ion, most probably from its open form, gives the [M-28-Ar 1 CON $_2$]⁺, **X**, [M-28-Ar 1 CON $_2$ H]⁺, **XI**, and [M-28-Ar 1 CON $_2$ H $_2$]⁺, **XII**, ions. Ions **XI** and **XII** could be also formed from the [M-29]⁺ ion in an analogous way.

In another fragmentation path, the [M-28]* ion is split following the fragmentation path of alkylarylamine derivatives, thus giving fragments corresponding to the [M-28-Ar²N = CH₂]*, XIII, and [M-28-Ar²NH]*, XIV, ions (Scheme 2).

Of interest are the ions XIX and XX (Scheme 3), which appear with a low relative intensity. Their elemental composition has been confirmed by accurate mass measurements for compounds 2a and 2c. These ions, which require a skeletal rearrangement in order to be formed, could be generated either from the [M-29]⁺, III, or from the [M-29-Ar¹CONH₂]⁺, IX, fragment, probably through an azetidine intermediate as given in Scheme 3.

The base peak in the mass spectra of compounds 2 corresponds to the Ar $^1\dot{C}O$ or Ar $^2\dot{N}H = CH_2$ ions, whereas there are peaks of prominent abundance at m/z 115, corresponding to the PhC $\equiv C \cdot \dot{C}H_2$ fragment, which is typical for the 4-phenyl-5-methyl-1,2,3-triazole derivatives, as well as peaks corresponding to the $[Ar^2NH_2]^+$, $Ar^2\dot{N} \equiv CH$, $[Ar^1CONH_2]^+$, $Ar^1C \equiv \dot{N}H$, $[PhCN]^+$, and $PhC \equiv \dot{N}H$ ions. The main fragments appearing in the mass spectra of compounds 2 are given in Table 1. A representative mass spectrum of compound 2a is given in Figure 1.

EXPERIMENTAL

Melting points were obtained with a Kosler hot stage apparatus and are uncorrected. The ir spectra were recorded as nujol mulls on a Perkin-Elmer 297 spectrometer. The 'H nmr spectra, reported in δ units, were obtained with a Brucker AW 80 spectrometer in deuteriochloroform-hexadeuteriodimethylsulfoxide mixtures (4:1), with tetramethylsilane (TMS) as internal standard. Elemental microanalyses were performed with a Perkin-Elmer 240B CHN analyzer. Column chromatography separation were performed over Merck Kieselgel 60, particle size 0.063-0.200 mm. The mass spectra were obtained with a VG 250 spectrometer, at 70 eV ionization energy and an ion source temperature of 150°. Samples were introduced directly in the ion source. Accurate masses were measured with the same as above instrument and with a resolution of 5000.

1-(N,N-Diaroyl)amino-5-bromomethyl-4-phenyl-1,2,3-triazoles la-c were prepared by reacting the corresponding 1-(N,N-diaroyl)amino-5-methyl-4-phenyl-1,2,3-triazoles with N-bromosuccinimide, according to the literature [2].

1-Aroylamino-5-arylaminomethyl-4-phenyl-1,2,3-triazoles 2a-h were prepared by the following general procedure.

A mixture of 5-bromomethyl-1,2,3-triazole 1 (1 mmole) and the corresponding aromatic amine (4 mmoles) in ethanol (10 ml) were refluxed under nitrogen for 45 minutes (In the case of the reac-

tion of 1 with 4-nitroaniline, 1-butanol (10 ml) was used as solvent and refluxing continued for 3 hours). The reaction mixture, after evaporation of the solvent, was chromatographed on a silica gel column using a mixture of n-hexane-ethyl acetate as eluant, to give compound 2. From the column the corresponding benzanilide 3 was also isolated.

Analytical and spectral data of compounds 2 are given in Table 2.

REFERENCES AND NOTES

- [1] H. Wamhoff, 1,2,3-Triazoles and Their Benzo Derivatives in Comprehensive Heterocyclic Chemistry, Vol 5, A. R. Katritzky and C. W. Rees, eds, Pergamon Press, New York, 1984, p 706.
 - [2] N. A. Rodios, J. Chem. Soc., Perkin Trans. 1, 1167 (1985).
 - [3] N. A. Rodios, J. Heterocyclic Chem., 24, 1275 (1987).
 - [4] A. Bojilova, N. A. Rodios and N. E. Alexandrou, J. Chem. Soc.,

- Perkin Trans. 1, 3233 (1988); A. Bojilova, N. A. Rodios, C. A. Tsoleridis and N. E. Alexandrou, J. Heterocyclic Chem., 27, 735 (1990).
- [5] A. Bojilova and N. A. Rodios, J. Heterocyclic Chem., 28, 593 (1991).
 - [6] E. Laskos, P. S. Lianis and N. A. Rodios, To be published.
- [7] N. E. Alexandrou and E. D. Micromastoras, Tetrahedron Letters, 231 (1968).
- [8] S. Adamopoulos and N. E. Alexandrou, J. Heterocyclic Chem., 21, 145 (1984).
- [9] N. A. Rodios and S. Adamopoulos, J. Heterocyclic Chem., 24, 1461 (1987).
- [10] F. Benedetti, M. Forchiassin, C. Russo and P. Nitti, Org. Mass Spectrom., 23, 794 (1988).
- [11] S. I. Miller, R.-R. Lii and Y. Tanaka, J. Chem. Soc., Perkin Trans. 1, 15 (1979); Q. N. Porter, Mass Spectrometry of Heterocyclic Compounds, 2nd Ed, John Wiley and Sons, New York, 1986, p 782.
 - [12] N. A. Rodios, unpublished results.
- [13] J.-L. Aubagnac, P. Campion and P. Guenot, Org. Mass Spectrom., 13, 571 (1978).